Full Spectrum Engineering 40W Hobby Laser | Modern Device

Full Laser

Self Shaving Your Back / August 23, 2020

E. Puttonen, A. Jaakkola, P. Litkey, and J. Hyyppä, “Tree classification with fused mobile laser scanning and hyperspectral data, ” Sensors (Basel) 11(5), 5158–5182 (2011).
[Crossref] [PubMed]

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification, ” ISPRS J. Photogramm. Remote Sens. 66(5), 637–641 (2011).
[Crossref]

E. Puttonen, J. Suomalainen, T. Hakala, E. Räikkönen, H. Kaartinen, S. Kaasalainen, and P. Litkey, “Tree species classification from fused active hyperspectral reflectance and LIDAR measurements, ” For. Ecol. Manage. 260(10), 1843–1852 (2010).
[Crossref]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source, ” Sensors (Basel) 10(7), 7057–7066 (2010).
[Crossref] [PubMed]

A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy, ” Opt. Express 18(16), 5 (2010).
[Crossref] [PubMed]

W. Wagner, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts, ” ISPRS J. Photogramm. Remote Sens. 65(6), 505–513 (2010).
[Crossref]

T. G. Jones, N. C. Coops, and T. Sharma, “Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada, ” Remote Sens. Environ. 114(12), 2841–2852 (2010).
[Crossref]

M. Godbout, J. D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs, ” Opt. Express 18(15), 9 (2010).
[Crossref] [PubMed]

V. Thomas, J. McCaughey, P. Treitz, D. Finch, T. Noland, and L. Rich, “Spatial modelling of photosynthesis for a boreal mixedwood forest by integrating micrometeorological, lidar and hyperspectral remote sensing data, ” Agric. For. Meteorol. 149(3-4), 639–654 (2009).
[Crossref]

T. J. Papetti, W. E. Walker, C. E. Keffer, and B. E. Johnson, “Coherent backscatter: measurement of the retroreflective BRDF peak exhibited by several surfaces relevant to ladar applications, ” Proc. SPIE 6682, 66820E, 66820E-13 (2007).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber, ” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva, “Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance, ” Geophys. Res. Lett. 32(21), L21S02 (2005).
[Crossref]

S. Tan and R. M. Narayanan, “Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing, ” Appl. Opt. 43(11), 2360–2368 (2004).
[Crossref] [PubMed]

D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture, ” Remote Sens. Environ. 90(3), 337–352 (2004).
[Crossref]

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds, ” Proc. SPIE 4893, 1–11 (2003).
[Crossref]

M. Nischan, R. Joseph, J. Libby, and J. Kerekes, “Active spectral imaging, ” Lincoln Lab. J. 14, 131–144 (2003).

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets, ” Proc. SPIE 3710, 144–153 (1999).
[Crossref]

G. C. Guenther, P. E. LaRocque, and W. J. Lillycrop, “Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar, ” Proc. SPIE 2258, 422–430 (1994).
[Crossref]

J. Penuelas, I. Filella, C. Biel, L. Serrano, and R. Save, “The reflectance at the 950–970 nm region as an indicator of plant water status, ” Int. J. Remote Sens. 14(10), 1887–1905 (1993).
[Crossref]

C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation, ” Remote Sens. Environ. 8(2), 127–150 (1979).
[Crossref]

J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva, “Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance, ” Geophys. Res. Lett. 32(21), L21S02 (2005).
[Crossref]

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets, ” Proc. SPIE 3710, 144–153 (1999).
[Crossref]

J. Penuelas, I. Filella, C. Biel, L. Serrano, and R. Save, “The reflectance at the 950–970 nm region as an indicator of plant water status, ” Int. J. Remote Sens. 14(10), 1887–1905 (1993).
[Crossref]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source, ” Sensors (Basel) 10(7), 7057–7066 (2010).
[Crossref] [PubMed]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source, ” Sensors (Basel) 10(7), 7057–7066 (2010).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber, ” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

T. G. Jones, N. C. Coops, and T. Sharma, “Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada, ” Remote Sens. Environ. 114(12), 2841–2852 (2010).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber, ” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. Penuelas, I. Filella, C. Biel, L. Serrano, and R. Save, “The reflectance at the 950–970 nm region as an indicator of plant water status, ” Int. J. Remote Sens. 14(10), 1887–1905 (1993).
[Crossref]

V. Thomas, J. McCaughey, P. Treitz, D. Finch, T. Noland, and L. Rich, “Spatial modelling of photosynthesis for a boreal mixedwood forest by integrating micrometeorological, lidar and hyperspectral remote sensing data, ” Agric. For. Meteorol. 149(3-4), 639–654 (2009).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber, ” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

G. C. Guenther, P. E. LaRocque, and W. J. Lillycrop, “Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar, ” Proc. SPIE 2258, 422–430 (1994).
[Crossref]

D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture, ” Remote Sens. Environ. 90(3), 337–352 (2004).
[Crossref]

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification, ” ISPRS J. Photogramm. Remote Sens. 66(5), 637–641 (2011).
[Crossref]

E. Puttonen, J. Suomalainen, T. Hakala, E. Räikkönen, H. Kaartinen, S. Kaasalainen, and P. Litkey, “Tree species classification from fused active hyperspectral reflectance and LIDAR measurements, ” For. Ecol. Manage. 260(10), 1843–1852 (2010).
[Crossref]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source, ” Sensors (Basel) 10(7), 7057–7066 (2010).

Source: www.osapublishing.org